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Abstract: As the prevalence of diabetic retinopathy (DR) continues to rise, there is a need to
develop computer-aided screening methods. The current study reports and validates an ordinary
least squares (OLS) method to model optical coherence tomography angiography (OCTA) images
and derive OLS parameters for classifying proliferative DR (PDR) and no/mild non-proliferative
DR (NPDR) from non-diabetic subjects. OLS parameters were correlated with vessel metrics
quantified from OCTA images and were used to determine predicted probabilities of PDR,
no/mild NPDR, and non-diabetics. The classification rates of PDR and no/mild NPDR from
non-diabetic subjects were 94% and 91%, respectively. The method had excellent predictive
ability and was validated. With further development, the method may have potential clinical
utility and contribute to image-based computer-aided screening and classification of stages of
DR and other ocular and systemic diseases.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diabetic retinopathy (DR) remains one of the leading causes of vision loss worldwide [1]. It is
the most common microvascular complication of diabetes and is classified into non-proliferative
DR (NPDR) and proliferative DR (PDR) [2,3]. It is projected the global number of people with
DR will increase to 191 million by 2030 [4]. Identified by neovascularization and vitreous or
preretinal hemorrhage, PDR and its complications form the most severe types of the disease,
potentially leading to blindness [3]. Progression of DRmay be asymptomatic, thus early screening
of DR is crucial in reducing the risk of visual impairment [5].
Detection of retinal microvasculopathies through evaluation of fundus photographs and

ophthalmoscopy are the most common methods to diagnose DR [6]. Furthermore, analysis of
retinal microvasculature in digital fundus images facilitates prognosis of DR, as quantitative
assessment of vessel morphology is feasible [7]. Increased retinal vessel tortuosity, decreased
vessel density, and enlargement of the foveal avascular zone have been detected in DR optical
coherence tomography angiography (OCTA) images [8–10].
Innovative methods involving machine learning and computational techniques have been

developing to improve screening of DR. Deep learning algorithms have been designed to detect
DR with high validity using retinal photographs [11–15]. Discrimination of DR images has been
made possible by texture classification [16,17] and lesion detection in retinal images [18–20].
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Furthermore, support vector machine classification methods have effectively detected DR using
retinal images in recent studies [21–23]. More recently, features of OCTA images have been
utilized in establishing computer-aided methods to classify mild NPDR [24,25].
The use of automated methods to screen DR will increase efficiency, reduce costs, and

potentially improve patient outcomes by early detection of the disease [26]. As DR prevalence
continues to rise [4], techniques to advance diagnosis must continue to be developed. Although
vessel abnormalities are expected as DR progresses, development of methods to promptly identify
pathology that is not visually recognizable is important to address early screening and diagnosis
of DR through simple and objective classification.

We have previously established a fine structure analysis method to discriminate between normal
and demented brain images [27], as well as DR stages using conjunctival microvasculature images
[28] and retinal images [29]. The current study reports and validates a method of ordinary least
squares (OLS) modeling of images for classification of DR from non-diabetic subjects. The
method was validated in advanced DR due to established retinal vascular pathologies and applied
for classification of early DR. The purposes of the current study were to test the hypotheses that
estimated parameters derived from an OLS model applied to OCTA images are related to retinal
vessel metrics and can classify advanced and early DR from non-diabetic subjects.

2. Materials and methods

2.1. Subjects

The study was conducted at the University of Illinois at Chicago and University of Southern
California and was approved by their corresponding Institutional Review Boards. After the
study was explained to the subjects, informed consents were obtained in accordance to the tenets
of Declaration of Helsinki. Subjects were stratified into non-diabetic (N=22), no DR (N=33),
mild NPDR (N=26), and PDR (N=13) groups based on clinical retinal examination by expert
retinal specialists. Diabetic subjects with no DR or mild NPDR were grouped as no/mild NPDR
(N=59), as categorized in previous publications [30–32]. The ages of non-diabetic, no/mild
NPDR, and PDR subjects were 55± 10 years (mean± standard deviation), 56± 15 years, and
57± 11 years, respectively (P ≥ 0.62). The non-diabetic group consisted of 7 males and 15
females, the no/mild NPDR group included 26 males and 33 females, and there were 8 males and
5 females in the PDR group (P ≥ 0.09). Eleven of the 13 PDR subjects had a previous history
of panretinal photocoagulation. None of the mild NPDR subjects had a history of treatment or
diabetic macular edema, according to previously published criteria [33].

Prior to imaging, subjects’ eyes were dilated using 1% tropicamide (Alcon Laboratories, Inc.,
Fort Worth, TX) and 2.5% phenylephrine hydrochloride (Paragon BioTek Inc., Portland, OR).
Images acquired from one eye of each subject were analyzed. One eye was selected at random,
when data were available in both eyes.

2.2. Image acquisition

Images were obtained using a commercially available Avanti OCTA system (Optovue, Inc.,
Fremont, CA). OCTA images of the superficial capillary plexus were acquired in a 6× 6mm
macular region centered on the fovea. The superficial capillary plexus was defined by the Optovue
software within the nerve fiber and ganglion cell layers. The superficial capillary plexus was
selected for analysis to avoid potential projection artifacts on deeper plexus.

2.3. Image analysis

2.3.1. Vessel tortuosity

Retinal vessel tortuosity was quantified by our previously published tortuosity index using
6× 6mm OCTA images of the retinal superficial capillary plexus [34]. A binary vessel map
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was produced from detection of retinal vessels using a k-means clustering algorithm. Distance
transformation was used to extract centerlines between the bifurcation points by selection of
vessel endpoints on the binary vessel map. The mathematical derivation of tortuosity index can
be found elsewhere [34]. Tortuosity index was calculated for each of the extracted centerlines
and averaged per eye. The minimum value for tortuosity index is theoretically zero, which
corresponds to a straight line, and a theoretical maximum value for tortuosity index does not
exist.

2.3.2. Vessel density and spacing

A previously validated local fractal dimension analysis method was applied to OCTA images to
assess retinal vessel density [35–37]. To calculate the local fractal dimension of each pixel, a
moving window size of 3× 3 pixels was utilized, which varied with the distribution of vessels
around it. The fractal dimension ratio (FDR) was derived from the ratio of local fractal dimension
of each pixel to the maximum local fractal dimension. A graphic representation of the probability
index of presence of vessel of a certain size at each pixel is provided by the FDR. FDR between
0.7 and 1 represented large and small vessels (vessel density), between 0.3 and 0.7 represented
small vessel spacing, and less than 0.3 represented large vessel spacing, as previously reported
[35]. Metric values of 0 and 1 indicate 0% and 100% of the total image, respectively.

2.4. Image model assumptions

Our fundamental assumption is that a two-dimensional (2D) digital image with linearly inde-
pendent columns and rows can be a solution to a 2D partial difference equation (PdE). Based
on differential equation parameter estimation literature [38], a 2D PdE with estimable parame-
ters can be derived by finite difference approximation, employing backward differences of all
derivatives in the general linear stationary 2D partial differential equation. The PdE has the same
autocorrelation function and parameters as the image. As described in our previous publications
[27–29], Eq. (1) expresses the intensity (y) of the image at pixel locations (i,j) as a solution of the
general linear, stationary, autoregressive PdE.

y(i, j) =
∑p

k=0

∑q

l=0
βkl y(i − k, j − l) + u(i, j) (1)

In Eq. (1), k+ l>0 and u(i,j) is a random process error term which can be minimized in
variance to estimate the βkl parameters. In fact, it has been shown that a majority of images have
an autoregressive 2D autocorrelation function [39]. We propose that the identified parameters
in the autoregressive model are informationally sufficient to discriminate normal and diseased
conditions. This is a classic binary discrimination exercise [40].

2.5. Ordinary least squares model derivation and estimation

Derivation of the OLS model parameters has been described in depth by O’Neill and associates
[27]. An image of m by n pixels, expressed as a matrix, can be transformed into a one dimension
vector of length m x n by 1 by stacking the pixels into a single column. Specifically, if A is any m
by n matrix [a1 a2 . . . an ], then vec(A)= [a1

T a2
T
. . . an

T ]T is a mn by 1 vector. The following
result transforms estimation of the autoregressive model parameters, βkl, into a simple OLS
estimation exercise [41].
If ct and At are real scalars and matrices, respectively, then

vec
(∑k

t=1
ctAt

)
=

k∑
t=1

ct vec(At) (2)

From Eq. (1), define yo = vec[y(i,j)], x1 = vec[y(i,j-1)], x2 = vec[y(i-1,j)], . . . , xp+q+qp = vec[y(i-
p,j-q)], and uo = vec[u(i,j)]. Following Eq. (2), the expression in Eq. (1), with β as a column
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vector having p+ q+qp elements, βkl, has the familiar OLS population regression form:

y0 = [x1x2 . . . .xp+q+qp] β + u0 = Xβ + u0 (3)

The finite sample form of Eq. (3) employed to estimate β is:

y0 = Xb + e0 (4)

In Eq. (4), b (OLS parameter vector) is the OLS estimate of the population (true) value β and the
vector eo estimates the random residual vector uo. A necessary and sufficient condition that a
vector b exists to minimize eo

Teo is the columns of X are linearly independent; in which case
b= (XTX)−1XTyo and eo= yo - Xb.

In our previous method for discriminating groups based on Fisher’s linear discriminant (FLD)
method [27–29], 9 OLS parameters were used. Discrimination efficacy increases with the number
of OLS parameters per image. However, there are validation constraints. In the FLD method,
B1 and B2 denote the class matrices of parameter vectors of m1 and m2 from respective images.
Each vector is of parameter size n (e.g., n= 3 for a spatial lag of 1), such that the class matrices
are m1 by n and m2 by n. The estimated covariance matrices of the B matrices are expressed
by G1 and G2 and the estimated covariance matrix of Bp = [B1 B2]T is Gp. The eigenvector vc
satisfying: (G1 – G2 – Gp)vc= λ(G1 +G2)vc, for the unique eigenvalue λ , 0, is the optimal
projection vector for discriminating images from binary groups. A solution for vc exists only
if the number of OLS parameters per image is less than or equal to the total number of images
minus 2 [42]. Also, the estimated covariance matrices must be positive definite for the FLD
projections maximum separation to be valid [43]. Both of these constraints become tight as the
number of OLS parameters increases. To validate the models, the order s of the assumed PDE
model requires (s+1)2 OLS parameters to be determined within the above noted constraints. The
algorithm to select s is quite simple. Increase s from one until any covariance matrix is not
positive definite or the number of OLS parameters is greater than the number of images minus 2.
For the image data in the current study, s=4, thus, (s+1)2 = 25 OLS parameters were required to
estimate a 4th order PDE model for each image. Note that this algorithm requires modeling all of
the images for each s selected. Thus, to reach s=4 requires 4 passes through the data. The OLS
and matrix positive definite were checked in MATLAB which typically takes 4.3 seconds to run
through 100 images.

In summary, the difference equation model of an image becomes a linear relation between the
image, now a vector, and vectors representing spatial lags of the image, reducing the model to
an OLS format. The vectorizing transformation of the image allows for estimation of the OLS
model parameters, which weight a linear combination of lagged image vectors that minimizes the
mean square error between the original image and the weighted lagged images. The resulting
OLS parameters are estimates of the autoregressive model parameters, which under necessary
conditions exist to minimize random residuals. The vectors of the OLS model are unstacked to
produce a 2D OLS image model. Figure 1 illustrates OCTA and OLS images of non-diabetic and
PDR subjects. R2 derived from the OLS regression for the NC and PDR OLS image models
were 71% and 79%, respectively.

2.6. Class probability estimates

The method of logistic regression can be used to estimate the probability a given image is
in the diseased or normal class. Logistic regression is a nonlinear transformation of a linear
discriminant for class membership. The estimated discriminating variable is the probability a
given subject is in a certain class. The probability a particular subject is in class one (πi = 1) is
in agreement with the logistic model [44]. For a set of data to be classified into 2 classes, π is
either 0 or 1. If the predictor variables are known for all data, then the intercept coefficients can
be estimated by iteratively reweighted least squares [45].
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Fig. 1. Optical coherence tomography (OCTA) images and ordinary least squares (OLS)
image models of a non-diabetic (NC) (top) and proliferative diabetic retinopathy (PDR)
(bottom) subject. The color bar represents pixel intensities. The OLS image model captured
about 86% of the OCTA image information, hence the difference in pixel intensities between
the two images.

A natural choice of predictors when estimating the probability for classifying images are the
25 OLS parameters that are derived from each image. Even though iteratively reweighted least
squares is a nonlinear algorithm, it has an overfitting problem (analogous to OLS estimation)
which requires a careful choice of which OLS parameters to include in the logistic regression.
The OLS parameters passed a Kolmogorov-Smirnov (KS) test for normality at level 0.05 or
better for all images modeled [43]. The OLS regressions producing the parameters had 156,816
degrees of freedom (6272 samples per parameter estimated), thus the KS test outcomes were not
unexpected. Student-t tests were made of all parameters after applying the White heteroscedastic
transformation to the estimated parameter covariance matrices [46].

2.7. Statistical analysis

All statistical analyses were conducted using SAS software (SAS, version 9.4; SAS Institute
Inc., Cary, NC). A two-sided p-value less than 0.05 was considered to be statistically significant.
From the 25 OLS parameters, the first coefficient was excluded, as it represents the intercept.
Normality of data distribution of continuous variables and 24 OLS parameters was assessed
using Shapiro-Wilk tests and graphical visualization of quantile-quantile plots. Assessment of
Cook’s distance, difference in fits, and studentized residuals was performed to detect outliers,
and no influential outliers were identified. Comparison of vessel metrics between non-diabetic
and PDR groups was performed using unpaired t-tests or Wilcoxon Rank-Sum tests. Pearson or
Spearman’s rank correlations were used to determine associations of OLS parameters with each
vessel metric based on compiled data in non-diabetic and PDR groups.
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Univariate logistic regressions were performed to examine the associations of individual OLS
parameters with disease groups. OLS parameters that were significantly associated with presence
of PDR or no/mild NPDR (significant Wald and likelihood ratio test) were then selected as
predictors in binary multivariate logistic regression with disease group as outcome.

Performance of the binary multivariate logistic regression was assessed by likelihood ratio test,
deviance, and Nagelkerke coefficient of determination. Classification rate at a cut-off point of 0.5
and area under receiver operating characteristic curve (AUROC) were determined to evaluate the
predictive ability.
Since the sample size in PDR group was not adequate for external validation, the binary

multivariate logistic regression model was validated by means of leave-one-out cross validation.
Leave-one-out cross validation randomly divides the data set into N partitions, uses N – 1
partitions as the training set, and makes a prediction on the remaining partitions until there
is a prediction for N partitions [47]. Cross-validated predicted probabilities were calculated
for N response levels, corresponding to the maximum number of response levels across both
groups. The cross-validated predicted probabilities were used to generate a receiver operating
characteristic curve and to produce the sensitivity and specificity values used in estimating the
AUROC. The equality of the AUROCs of the fitted models with and without cross validation was
tested by a global chi-square test.
The OLS model was externally validated in the combined non-diabetic and no/mild NPDR

groups, due to a larger sample size. Images in 22 non-diabetic and 59 no/mild NPDR subjects
(N=81) were randomly split into training (70%; N=58) and validation (30%; N=23) sets. There
were 16 non-diabetic and 42 no/mild NPDR subjects in the training set, and 6 non-diabetic
and 17 no/mild NPDR subjects in the validation set. Classification rates and AUROCs derived
from training and validation sets were compared to assess predictive ability. To determine the
model’s performance using the external validation method, calibration, which is a measure of the
agreement between observed and predicted outcomes, was assessed in training and validation
sets using Hosmer-Lemeshow test and calibration plots [48].

3. Results

3.1. Comparison of vessel metrics between non-diabetic and PDR groups

Figure 2 displays examples of OCTA and FDR images of non-diabetic and PDR subjects. The
mean and standard deviation of each vessel metric in non-diabetic and PDR groups are presented
in Table 1. Vessel density and small vessel spacing were significantly decreased (P< 0.0001)
and large vessel spacing was increased (P< 0.0001) in the PDR compared to non-diabetic group.
There were no significant differences in tortuosity index between groups (P= 0.34).

Table 1. Mean vessel metrics±standard deviation in non-diabetic and PDRa groups.

Non-diabetic (N=22) PDR (N=13) P-value

Vessel Density 0.50± 0.04 0.42± 0.04 <0.0001

Small Vessel Spacing 0.35± 0.01 0.32± 0.02 <0.0001*

Large Vessel Spacing 0.15± 0.03 0.26± 0.05 <0.0001

Tortuosity Index 0.54± 0.13 0.50± 0.13 0.34*

aPDR= proliferative diabetic retinopathy; Metrics were compared using unpaired t-test (no asterisk) or Wilcoxon Rank
Sum test (asterisk).

3.2. Correlation of OLS parameters with vessel metrics

Association of OLS parameters with vessel metrics was examined in compiled data in PDR and
non-diabetic subjects. The strength of the relationships of OLS parameters that were correlated
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Fig. 2. Optical coherence tomography angiography (OCTA) and fractal dimension ratio
(FDR) images of a non-diabetic (NC) (top) and proliferative diabetic retinopathy (PDR)
(bottom) subject. The color bar represents FDR values.

with at least 1 vessel metric are shown in Table 2. Vessel density was correlated with 4 OLS
parameters (b6, b13, b17, b20) (P ≤ 0.04, N= 35). Small vessel spacing was correlated with 3
OLS parameters (b2, b6, b7) (P ≤ 0.0002, N= 35). Large vessel spacing was correlated with 5
OLS parameters (b6, b7, b17, b20, b24) (P ≤ 0.04, N= 35). Tortuosity index was correlated with
4 OLS parameters (b4, b5, b15, b23) (P ≤ 0.04, N= 35).

3.3. Classification of non-diabetic and PDR groups

The statistical results of the associations of individual OLS parameters with disease group
are reported in Table 3. Six OLS parameters (b2, b6, b11, b20, b23, b24) were significantly
associated with presence of PDR (P ≤ 0.005). The individual OLS parameters correctly classified
71% to 77% of subjects and achieved AUROCs between 0.74 and 0.85.

Table 3 additionally presents the statistical results of associations of 6 significant OLS
parameters with disease group. The binary multivariate logistic regression model had high
performance as indicated by the likelihood ratio test statistic and correctly classified 94% of
subjects, such that only 1 of 22 non-diabetic and 1 of 13 PDR subjects were misclassified.
Furthermore, the AUROC was 0.99, implying excellent predictive ability.

3.4. Validation of the binary multivariate logistic regression model

The AUROCs of the models with and without cross validation were 0.86 and 0.99, respectively.
The difference between AUROCs was not statistically significant (X2 = 3.34, P= 0.07), implying
validation of the method. However, further studies with a larger sample size are needed to dismiss
the possibility of a type II statistical error in this result. The models with and without cross
validation correctly classified 80% and 94% of subjects, respectively.
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Table 2. Relationships between OLSa parameters and vessel metrics of PDR and non-diabetic
groups

Vessel Metrics

b2 b4 b5 b6 b7 b13 b15 b17 b20 b23 b24

Vessel
Density
CCb -0.18 0.13* -0.10* -0.58 0.25* -0.35 -0.29 0.48* 0.44 -0.30 0.28

P-value 0.30 0.46 0.58 0.0003 0.15 0.04 0.09 0.004 0.01 0.08 0.11

Small Vessel
Spacing
CC -0.72 -0.09* 0.23* -0.60 0.59* -0.03 -0.03 0.13* 0.28 -0.15 0.31

P-value <0.0001 0.60 0.18 0.0002 0.0002 0.86 0.87 0.47 0.11 0.38 0.07

Large
Vessel
Spacing
CC 0.24* -0.13* 0.04* 0.72* -0.43* 0.30* 0.26* -0.47* -0.43* 0.28* -0.35*

P-value 0.17 0.47 0.84 <0.0001 0.01 0.08 0.13 0.005 0.01 0.10 0.04

Tortuosity
Index
CC -0.33* -0.35* 0.40* 0.03* -0.06* -0.16* -0.38* 0.13* 0.25* -0.39* 0.06*

P-value 0.06 0.04 0.02 0.87 0.75 0.36 0.03 0.47 0.15 0.02 0.73

aOLS= ordinary least squares; bCC= correlation coefficient. CCs derived from Pearson correlation (no asterisk) or
Spearman’s rank correlation (asterisk).

Table 3. OLSa parameters associated with presence of PDRb

OLS Parameters Wald X2 LRc X2 Deviance R2d Classification AUROCe

b2 6.37f 10.57g 35.61h 0.36 74% 0.76

b6 7.73f 12.17g 34.01h 0.40 74% 0.85

b11 4.23f 7.97g 38.21h 0.28 77% 0.74

b20 7.13f 11.08g 35.10h 0.37 71% 0.80

b23 6.43f 10.67g 35.51h 0.36 74% 0.80

b24 6.71f 10.53g 35.65h 0.35 74% 0.80

b2, b6, b11 b20, b23, b24 3.79 38.17g 8.01h 0.91 94% 0.99

a OLS= ordinary least squares; bPDR= proliferative diabetic retinopathy; cLR=Likelihood Ratio; dR2 =Nagelkerke
coefficient of determination (ranging from 0 to 1); eAUROC= area under receiver operating characteristic curve. Results
of individual and multiple OLS parameters are derived from univariate and binary multivariate logistic regression
models, respectively. Individual OLS parameters without significant Wald X2 and LR X2 are not displayed. fP < 0.05;
gP ≤ 0.005; h P > 0.20.

3.5. Classification of non-diabetic and no/mild NPDR groups

In the training set, 5 OLS parameters (b14, b19, b20, b23, b24) were significantly associated
with presence of no/mild NPDR (P ≤ 0.012). The individual OLS parameters correctly classified
71% to 79% of subjects and achieved AUROCs between 0.71 and 0.77. The binary multivariate
logistic regression model correctly classified 86% of subjects, achieved an AUROC of 0.85, and
was well-calibrated (X2= 6.26, P= 0.62). With the validation set and using the same 5 OLS
parameters from the training set, the model correctly classified 91% of subjects, achieved an
AUROC of 0.93, and was also well-calibrated (X2= 2.30, P= 0.93).
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4. Discussion

The pressure of a continually growing population of individuals with vision impairment associated
with DR has prompted ingenious techniques to aid in screening of the disease. The emerging field
of image-based computer-aided screening has shown to discriminate between DR and healthy
retinal images [16,17,22,23,25,28]. Automated screening has a promising future in alleviating
the demand for qualified specialists, reducing economic burden, and most importantly, preventing
irreversible blindness [26,49,50]. In the current study, an OLS modeling method was used to
generate estimated parameters that were associated with vessel metrics and classified PDR and
no/mild NPDR from non-diabetic subjects using OCTA images.
Although increased retinal vessel tortuosity has been described as a biomarker of NPDR, it

has not been exhibited in subjects with PDR [8,9]. In agreement with Lee and associates [9],
tortuosity index did not differ between PDR and non-diabetic groups in the current study. It is
plausible that sclerotic alterations due to DR progression [51,52] or changes following panretinal
photocoagulation [53] may decrease vessel tortuosity in PDR.
The findings of decreased vessel density and increased large vessel spacing in PDR are

consistent with published literature [9,10,35]. Interestingly, contrary to the results of Bhanushali
et al., in the present study small vessel spacing was decreased in PDR [35]. However, Bhanushali
and associates additionally reported a decrease in small vessel spacing with increasing severity
of DR [35]. Lei et al. demonstrated enlarged retinal vessel diameter in capillaries of the PDR
compared to non-diabetic group using 3× 3 mm OCTA images centered on the fovea [54]. Areas
of small vessels may be exhibiting a decrease in spacing possibly due to vasodilation.
In the current study, all vessel metrics were correlated with multiple OLS parameters. These

relationships suggest image characteristics such as vessel metrics are involved in statistical
classification of disease groups by OLS models. Vessel metrics likely influence OLS parameters
and their associations with presence of PDR. Correlations of retinal vessel metrics with OLS
parameters strengthens the validity of the models.
The OLS parameters used as predictors in binary multivariate logistic regression correctly

classified 94% of PDR and non-diabetic subjects and achieved a 0.99 AUROC. Different
stages of DR have been discriminated using retinal and conjunctival images by applying a
similar OLS method, but using 9 parameters and Fisher linear discriminant analysis [28,29].
However, the current study is the first report of an OLS 25-coefficient modeling method and
the use of these parameters to classify and derive predicted probabilities of PDR and non-
diabetics. Previous studies describing deep learning approaches to classify stages of DR using
retinal images have similarly achieved AUROCs greater than 0.93 [11,12,14,15,55,56]. Despite
demonstrating comparable predictive ability, the OLS modeling method is favorable because it
does not require thousands of images to train a neural network. Furthermore, machine learning
methods used for detection of DR and DR-related lesions predominantly use fundus photography
[11,12,14,22,23,57]. Application of computational techniques to OCTA rather than fundus
images is presumably more powerful due to improved resolution and detailed quantification of
microvasculature [58–60].
Classification of early stage of DR is essential for early detection of disease. In the current

study, in addition to mild NPDR, subjects with no DR were included because retinal damage
may be present in these subjects without any clinical signs [61]. In the externally validated set,
91% of no/mild NPDR and non-diabetic subjects were correctly classified with an AUROC of
0.93. Discrimination of non-diabetic and early DR subjects has been reported by other methods.
Using a support vector machine classifier, Alam and associates achieved an AUROC of 0.92
when classifying OCTA images of non-diabetic and mild NPDR subjects [25]. Additionally,
Khansari et al. used a fine structure analysis method applied to retinal fundus images that
correctly classified 88% of non-diabetic and no DR subjects [29].
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The most quantitative method to date that is directly related to our study is that by Kar and
Maity [19]. This study employs a mutual information maximization of complementary optimal
filters to effect classification of data sets of 40 to 1200 total subjects with an average of 98%
accuracy. Each image required 13 minutes to model. Therefore, their method of image modeling
applied to 100 images to determine the optimal PdE order would require 3.61 days compared
to our method that takes 20 seconds. Further, image pre-processing and mutual information
calculation preclude any possibility of parameter significance tests.
Deep learning methods (DLM), various forms of convolutional neural networks (CNN),

dominate other retinal image classification literature [11,12,14,15]. In [11], sets of 9963 and
1748 images are subject to a CNN classifier resulting in accuracies of 87.7 to 98.5%. Computer
times are not cited, but CNN is a notorious computer resource consumer [62]. CNN also
precludes statistical significance statistics except for confidence intervals of estimated sensitivity
and specificity. The authors admit unease at the lack of meaning of image features estimated.
The image grading system in [12] mimics that in [11] but with a larger, 71043 images -12,239 DR
positive, database. A 98.5-92.5% sensitivity – specificity is achieved as is a “black box” dilemma
attempting to interpret image properties estimated. The DLM employed in [14] achieved virtually
identical results as those in [12] with a slightly larger data base of 75,137 images. It is not clear
how the outcomes could possibly be differentiated. A DLM is also the classifier of choice in [15]
but a salient contribution is achieved by use of multiethnic subject classes. For each class the
shortcomings of using a DLM are obvious and separating classes requires human intervention so
it is not clear how “automatic” the process is.
For specific classification outcomes in specificity, sensitivity, and area under the receiver

operating characteristic, our method is comparable to those reviewed for a given sample size.
For smaller number of subjects, DLMs are not feasible while OLS models exist for any size of
image subjects having linearly independent pixel columns. This condition also implies an image
has a statistically significant 2D autocorrelation function as opposed to a degenerate one. OLS
models may be preferable since parameters are: 1) estimated over millisecond time frames using
a modest number of images, 2) normally distributed and Student-t testable, and 3) interpretable
in terms of biological features presented on images.

In the current study, only 45% of the OLS parameters were associated with presence of PDR
or correlated with vessel metrics. This finding suggests that other unknown image factors besides
vessel metrics contribute more than 50% to determination of OLS parameters. The study was
limited to classifying based on vascular perfusion in the parafoveal region, though the method
may be applicable to images obtained from other modalities and retinal regions. Additionally,
the method was established for classifying binary groups and further studies are needed to extend
the application of the method for classifying multiple groups. Further development is needed to
gain knowledge on the basis of disease classification using OLS parameters. Although a limited
sample size prohibited external validation of the model for classifying PDR and non-diabetic
subjects, leave-one-out cross validation which is an established and reliable method of validation
was employed [47,63]. Nevertheless, despite the small sample size, the number of available
images exceeded the minimum number of images needed for OLS modeling. Future studies with
larger cohorts are needed to perform external validation of the models.
In conclusion, an OLS modeling method estimated parameters that correlated with retinal

vessel metrics and classified PDR and no/mild NPDR from non-diabetic subjects with excellent
predictive ability. Compared to other methods of classification, the OLS modeling method has
advantages of requiring smaller data sets and shorter processing time, as well as generating results
that are amenable to statistical testing and biological interpretation. With further development,
the method may have potential clinical utility and contribute to image-based computer-aided
screening and classification of stages of DR and other ocular and systemic diseases.
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